
LoRa Mesh Network
for IoT Applications

Senior Capstone Project Progress Report

Andrew Courtemanche
Computer Engineering

Josh Lariviere
Computer Engineering

MD Shaad Mahmud
Faculty Advisor

College of Engineering and Physical Sciences
University of New Hampshire

December 2021

Abstract

This document is a progress report for our team’s senior capstone project. It
aims to explain our project’s end goal as well as provide an update as to its
current status. We will also discuss the plan for continuing work on the project
in the future.

Table of Contents

1 Introduction 3

2 Background 3
2.1 LoRa PHY . 3
2.2 LoRaWAN . 3

3 Objectives 3

4 Overview 4
4.1 Library Code Overview . 4
4.2 Mesh Protocol Overview . 5

5 Current Status 6
5.1 Initially Proposed Plan . 7
5.2 Deviations from Original Plan . 8

5.2.1 Library Plan Changes . 8
5.2.2 Timeline Changes . 9

5.3 Tasks Breakdown . 10

6 Future Work 10
6.1 Core Mesh Implementation . 10
6.2 Driver Implementations . 10
6.3 Documentation . 10

6.3.1 Doxygen . 10
6.4 Testing . 11

6.4.1 Application . 11

7 Discussion & Conclusion 11

Acknowledgment 12

References 13

Appendices 15

A LoRa Library GitHub Code Link 15

B IBUG Node Overview 15
B.1 IBUG Hardware Images . 16
B.2 IBUG Node Hardware . 17

1

C Project Timeline 17
C.1 Initial Intended Project Timeline 17

C.1.1 Initial Gantt Chart . 17
C.2 Current Project Timeline . 18

C.2.1 Updated Current Gantt Chart 18

D Project Budget Data 18
D.1 Anticipated Initial Budget Breakdown 18

D.1.1 Node Production Expenses 19
D.1.2 Testing Setup . 20
D.1.3 Web Services . 21
D.1.4 Total Budgeting Breakdown 21

D.2 Current Budget Status . 22
D.3 Future Budget Expectations and Plan 22

Acronyms 23

2

1 Introduction

The ability to collect real-time environmental data across a large area can allow
farmers to more efficiently allocate their limited time and resources, but current
solutions are prohibitively expensive. The most popular options still rely on a
single gateway to the internet that all sensors must directly connect to. These
expensive gateways can only service a limited number of sensors that are within
range, and local geography may limit suitable installation locations. Multiple
gateways must be purchased in order cover large areas, further reducing the
cost effectiveness of such a solution. We seek to design a mesh networking
protocol for this and similar low bandwidth applications that need to cover a
large geographical area. A mesh network enables low cost, long range, and low
maintenance communications without relying on any preexisting infrastructure.

2 Background

2.1 LoRa PHY

The LoRa Physical Layer (PHY) is a chirp-spread-spectrummodulation1 technique
designed for long range, lower power, low bit rate applications. It operates
on the unlicensed Industrial Scientific Medical (ISM) 902-928MHz band in the
USA. LoRa has three primary parameters: frequency, bandwidth, and spreading
factor. The bandwidth parameter defines the range around the center frequency
each chirp occupies. The spreading factor parameter defines how long each chirp
takes to complete. Higher bandwidths result in a higher data rate and lower
sensitivity, while higher spreading factors result in a lower data rate and higher
sensitivity [2]. Both sending and receiving nodes need to be configured with the
same parameters in order to communicate.

2.2 LoRaWAN

The most widely used protocol built on top of LoRa PHY is LoRaWAN. LoRaWAN
implements the data link and network layers of the Open Systems Interconnection
(OSI) model and uses LoRa PHY as the physical layer. LoRaWAN uses a star
topology, where each node in the network connects directly to one or more
network gateways [3].

3 Objectives

The original motivation of this project was to better facilitate the collection
of sensor data from nodes spread across a large geographical region. Current

1In digital communications, chirp spread spectrum is a spread spectrum technique that
uses wideband linear frequency modulated chirp pulses to encode information. A chirp is a
sinusoidal signal whose frequency increases or decreases over time.[1]

3

solutions require each node to be within range of a gateway, which limits
deployment flexibility, increases hardware costs, and reduces overall network
robustness.

We intend to design a set of protocols that utilizes the LoRa physical layer to
implement a low cost mesh packet-switched network. The primary objective is a
highly robust ”set it and forget it” network that is capable of self configuration.
Secondary objectives include low cost and energy efficiency.

4 Overview

4.1 Library Code Overview

The ultimate goal of this capstone project is to create a full LoRa Mesh library
to include into any application for most devices. We want to create the library
so that it is fully usable with any Integrated Development Environment (IDE)
that the user wants. Additionally, we aim to create driver templates for use
with the library to allow for easy addition of any sensors.

The library will consist of three ”layers” of code2:

• Driver

• Hardware Abstraction Layer (HAL)

• Hardware

Each layer is designed so that it only depends on the layer immediately
beneath it.

The hardware layer is used by the library to abstract away any hardware-
specific configuration such as register addresses, package pinouts, and how
peripherals are connected. Each hardware target has its own folder in this layer
and contains two files. One of these files contains register definitions, while
the other file contains any required software dependencies and pre-processor
definitions/macros. These files also ensure that only one hardware target can
be used at a time.

The Hardware Abstraction Layer (HAL) provides the driver layer with a
consistent interface regardless of the hardware it is running on. It is able to do
this through use of the information provided by the hardware layer. The HAL
is written in such a way that each of the functions are able to change based
on the pre-processor definitions from the hardware layer. To add support for
new hardware, one can add hardware information into the hardware layer, then
for each function of the HAL you can tailor the function to work with your
hardware using the compiler directives laid out.

The driver layer is what houses the drivers for the LoRa Mesh itself and the
various sensors to be used with it. Each driver is given its own folder to hold
all its necessary components for organization. For the sensor drivers, we aim

2LoRa Library GitHub Code Link A

4

to create abstract driver classes that a user can inherit to easily create a driver
for any sensor they would like without hassle. Our team is intending to create
drivers as well for all the sensors that are on the IBUG node3 that this library
is being created for.

There is also is a collection of functions and structs in the lib folder that
are useful to many other aspects of the drivers code. For example, one struct
houses the date and time and can return it with proper formatting. These files
mainly simplify the driver layer and increase code re-usability.

Our team aims to create an application using this library as well that will
run on the IBUG node4. The application will use the library to create a mesh
network using the LoRa and mesh drivers created. Then use the sensor drivers
made to gather data using the IBUG node sensors to begin the transmission of
the sensor data over the mesh network. This data will ultimately end up at a
gateway that leads to a central server that collects all the data for analysis.

4.2 Mesh Protocol Overview

The mesh protocol is designed to be as autonomous as possible, requiring
minimal configuration to create a large network. Since the transceivers on each
node can only listen to a single frequency, spreading factor, and bandwidth, an
additional mechanism is required to make sure different nodes are using identical
configurations in order to communicate. While the obvious solution is to use a
preset configuration across the network, this would dramatically reduce network
performance and susceptibility to interference. To work around these issues,
each node uses a Global Positioning System (GPS)5 receiver to synchronize
their clocks to a common reference. Transceiver settings are pseudo-randomly
generated, using the current date and time, as a seed for the random number
generator.

3IBUG Node Hardware B.2
4IBUG Node Overview B
5Global Positioning System, a United States government-owned global navigation satellite

system

5

Figure 1: Example mesh topography

Every minute is divided into four periods of 15 seconds each. During each
period, the available spectrum is divided into 32x500kHz, 64x250kHz, 128x125kHz,
or 256x62.5kHz channels, respectively, with appropriate padding in between
each channel. A new channel is pseudo-randomly selected for each of these
periods as the global discovery channel. All nodes will be expected to listen to
this global channel for requests to join the network, as well as transmit on that
channel in regular intervals, to facilitate peer discovery and mesh construction.
This random channel selection and bandwidth allocation ensures even spectrum
usage and resilience to interference. Transmissions on the discovery channel will
also use a pseudo-randomly selected spreading factor.

A network join packet is sent during the discovery phase and contains a
random unique identifier for the node, used to address the node. This identifier
is stored in a look-up table by all nodes that heard the broadcast join packet.
A node uses this number to seed a pseudo-random number generator to select
a random channel - not including the current discovery channel - that it will
listen for potential transmissions on. If a node would like to communicate with
a particular node, it can use the same number to figure out what channel the
target node will be listening on.

5 Current Status

Currently, the status of our project is we have completed the hardware and
hardware abstraction layers of the code. We have also laid out the full code
structure and all necessary components we will need for our library6. We are

6LoRa Library GitHub Code Link A

6

currently working on completing the drivers layer of our library. Our team has
additionally begun the documentation stage, utilizing the software Doxygen [4],
to simultaneously complete while we work on the drivers.

5.1 Initially Proposed Plan

Our teams initial timeline proposal was outlined by our initial Gantt chart7 we
hoped to achieve. We also initially proposed the broad structure we envisioned
for our library as follows:

• Server-side application

• Sensor data collection application

– Sensor interfacing

– Data logging

– Compression

– Encryption

• Mesh networking layer

– Node discovery and coordination

– Node to Node communication

– Packet routing

– Packet integrity

• Hardware Abstraction Layer (HAL)

• Node hardware design

We intended for each bullet in this list to be a layer of the code in the library
with all its sub components listed.

The node hardware design would be for any circuit changes that we deemed
necessary. The HAL would be used to allow the library to run specifically
on the IBUG node hardware8. The mesh networking layer would be used to
let the nodes create and access the LoRa mesh network. This layer would
house everything the node needed to discover the mesh and interact with it as
intended. Next the Sensor application layer was intended to be the application
created that runs on the node using the library. This application would be
what interacted with the sensors and collected their data, logged said data,
compressed it, encrypted it, then sent the neat packaged data to the mesh layer
to be sent along. The mesh layer would then eventually get the packaged data
to a server running an application to decrepit the incoming data and process it
accordingly.

7Initial Gantt Chart C.1.1
8IBUG Node Hardware B.2

7

5.2 Deviations from Original Plan

5.2.1 Library Plan Changes

Clearly with the library break down of our projects code in the Overview section9

some alterations to the library’s design have been made. The largest of these
changes is the structure and rolls of the library layers:

• Server-side application

• IBUG node application

– Compression

– Encryption

• Drivers layer

– LoRa mesh networking layer

∗ Node discovery and coordination

∗ Node to Node communication

∗ Packet routing

∗ Packet integrity

– Sensor layer

∗ Sensor interfacing

∗ Data logging

• Hardware Abstraction Layer (HAL)

• Hardware layer

These structure changes were made as our team gained more knowledge of
our project and what was needed for it.

We removed the nodes hardware design from our plan due to the issues with
current chip shortages. Our team decided that it would not be the best use of
time redesigning the nodes as their design was already usable and lead times
for fabrication were too long.

For the HAL and hardware layer our team decided that we wanted our
library to be able to be compiled and used for any IDE and any hardware a user
desired. We believe this will increase the overall usability of our library.

The most noticeable of the structure changes to the library was the addition
of the drivers layer. This layer now contains both the LoRa mesh drivers and the
sensor drivers. This change occurred because our team realized that having the
sensors controlled and talked to in an application was not efficient. We decided
that giving each sensor its own driver made it more modular and easier to swap
out in the application layer. With this decision having both the LoRa mesh
and sensors have their own drivers, we decided that a drivers layer containing

9Overview 4

8

both sets of drivers would be the best course. This layer would allow us to have
better organization of the code structure.

From the driver layer decision, this meant that the application layer we
wanted would then have to include any of the sensors we wanted to use instead.
This would make our intended application much more portable to other devices
as well, making it a good example code for our library. We still intend for the
application to have the compression and encryption of the sensor data to then
send to the mesh sub-layer however.

Another minor change was the use of the lib folder found in the GitHub
repository10. This folder is just used for helpful bits of code that can be used
in multiple sections as needed.

The last deviation from our original plan has to do with the server side
application. Purpose wise, this layer is unchanged, however our team has
decided that this part of the library is not essential for development purposes
and will be the lowest priority for the team.

Finally, we decided to de-prioritise the server side application since it is not
essential to the functionality of our project.

5.2.2 Timeline Changes

Our team, since the completion of the HAL, has moved our meetings from
in person to online. This was done because at this stage of our project our
tasks have been divided for the driver layer and our work has become more
independent. This has allowed us to be more flexible in our meeting times and
require less meetings overall. We currently meet about once a week online to
give updates to one another and discuss major design decisions.We use direct
messaging to communicate any minor questions and updates that arise as we
work. This is a change from our teams initial plan for meetings as we previously
met every Tuesday and Thursday for three hours to collaborate on the code up
to the HAL. Our current meeting setup will remain this way until the next
semester. However, it is likely to revert back to the original in person meetings
at scheduled times next semester as we bring the split layers together again.
We have also periodically attended project meetings with our advisor Professor
MD Shaad Mahmud and will continue to do so.

Our team has also updated our timeline in our new Gantt chart we created11.
This new timeline created is updated to the status of our project thus far. Our
team has not yet completed the full implementation stage of our library in
the initial timeline12. We also began the documentation earlier than planned
overlapping our implementation stage. Due to these differences in the plan, we
have extended out the time frame for implementation into the next semester, and
changed the documentation timeline. The reason for changing the documentation
timeline is because our team has concluded that we would be better off documenting
as we code rather than once it is all done, and therefore the timeline has

10LoRa Library GitHub Code Link A
11Updated Current Gantt Chart C.2.1
12Initial Gantt Chart C.1.1

9

been greatly increased. Due to the extension of our implementation stage, we
have extended our testing timeline as well as it now overlaps implementation.
We intend to at least get the project to a testable stage as soon as possible
over January break so we are deciding to keep the testing timeline overlapping
implementation.

5.3 Tasks Breakdown

Both team members collectively worked on the overall architecture of the library,
as well as making decisions regarding code conventions, documentation, and
version control systems. Both members also worked together on proposal and
report papers using the online LATEX editor Overleaf. Josh Lariviere handled
much of the advanced formatting features available in LATEX, the implementation
of the hardware and hardware abstraction layer portions of the software, and the
generalized templates for sensor drivers using abstract C++ classes. Andrew
Courtemanche is responsible for the design and implementation of the mesh
protocol itself, the drivers for interacting with the LoRa and GPS radios, and
improved automatic build tools using GNU make. The vast majority of the work
has been done collaboratively via in-person meetings multiple days a week. It
has been a noticeable advantage having only two members on the team, since
it eliminates a lot of the overhead of coordinating a large team.

6 Future Work

6.1 Core Mesh Implementation

While many of the core components of the mesh, LoRa, and GPS have been
designed and have skeleton code written, most of the actual functions have yet
to be implemented. This is arguably the highest priority task, as much of our
other code and testing relies on this portion of the project’s completion.

6.2 Driver Implementations

In addition to the core components of the project, many of our driver implementations
have yet to be written. This includes components such as temperature sensor,
humidity sensor, SD card support, etc. While not the focus of the project, they
are critical in practical testing of the mesh as a whole.

6.3 Documentation

6.3.1 Doxygen

To make the code base easier to maintain, all of our source files will be enhanced
with the automatic documentation generator Doxygen [4]. Doxygen generates
HTML documentation based on comments added directly to the source files.

10

This will make future improvements to the software much easier, as well as
providing library users a starting point for integrating with their own projects.

6.4 Testing

6.4.1 Application

The application layer depends on the completion of all of the other layers of the
project, and is primarily going to be used to test and validate the functionality
of the software stack13. Our goal with this project is not to write a particular
application, but rather facilitate the creation of useful applications that depend
on the networking capabilities of the mesh library itself.

We would additionally use this application to conduct field tests of the library
running on the IBUG node14 to further validate functionality.

7 Discussion & Conclusion

Overall our team encountered very few technical setbacks, but lost a lot of time
to factors unrelated to the project itself, including significant college course load.
Furthermore, due to the current global situation there has been a significant
integrated circuit shortage and Printed Circuit Board (PCB) fabrication lead
times have increased dramatically. This has resulted in an inability to make
any significant changes to the IBUG node hardware15. The increased hardware
costs have limited our ability to obtain additional IBUG node hardware beyond
what was already provided. This will limit large scale testing of our library.
Without the freedom to make hardware changes, the team was forced to test
LoRa communications using an Arduino MKR WAN 1300 [6]. As a result, we
have entirely shifted our focus to our software.

Our approach so far has involved a lot of organization and boilerplate16 to
give us a good foundation to build off of. This has consumed a lot of our time,
leaving us with a little less progress than we would have liked. Despite that,
it should result in significant time savings in the future, and we plan to spend
winter break getting our implementation to a point where we can begin testing.

13A software stack is a collection of independent components that work together to support
the execution of an application.[5]

14IBUG Node Overview B
15IBUG Node Hardware B.2
16In computer programming, boilerplate code—or simply, boilerplate—are sections of code

that are repeated in multiple places with little to no variation [7].

11

Acknowledgment

• University of New Hampshire College of Engineering and Physical Sciences
[8]

• National Science Foundation Grant #1935578 [9]

Figure 2: National Science Foundation

12

References

[1] W. Foundation, Chirp Spred Spectrum Definition, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Chirp spread spectrum.

[2] T. Joachim, Complete Reverse Engineering of LoRa PHY, 2021. [Online].
Available: https://www.epfl.ch/labs/tcl/wp-content/uploads/2020/02/
Reverse Eng Report.pdf.

[3] Semtech,What are LoRa and LoRaWAN? 2021. [Online]. Available: https:
//lora-developers.semtech.com/documentation/tech-papers-and-guides/
lora-and-lorawan.

[4] Doxygen,Doxygen Code Documentation Generator, 2021. [Online]. Available:
https://www.doxygen.nl/index.html.

[5] TechTarget, Software Stack Definition, 2021. [Online]. Available: https:
//searchapparchitecture.techtarget.com/definition/software-stack.

[6] Arduino CC,MKRWAN 1300 and Antenna Pricing, 2021. [Online]. Available:
https://store- usa.arduino.cc/products/arduino-mkr-wan- 1300- lora-
connectivity.

[7] W. Foundation, Boilerplate code, 2021. [Online]. Available: https://en.
wikipedia.org/wiki/Boilerplate code.

[8] University of New Hampshire, UNH College of Engineering and Physical
Sciences, 2021. [Online]. Available: https://ceps.unh.edu/.

[9] National Science Foundation, National Science Foundation Grant, 2021.
[Online]. Available: https://www.nsf.gov/.

[10] RAK, RAK4600 Documentation, 2021. [Online]. Available: https://docs.
rakwireless.com/Product-Categories/WisDuo/RAK4600-Module/Datasheet/.

[11] A. I. LLC, MTK3339 Datasheet, 2021. [Online]. Available: https://cdn-
shop.adafruit.com/product-files/746/CD+PA1616S+Datasheet.v03.pdf.

[12] B. Sensortec, BME688 Documentation, 2021. [Online]. Available: https://
www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/
bme688/.

[13] A. I. LLC, LIS3DH Datasheet, 2021. [Online]. Available: https ://cdn-
learn . adafruit . com/assets/assets/000/085/846/original / lis3dh .pdf ?
1576396666.

[14] M. C. AG, RV-8803-C7 Datasheet, 2021. [Online]. Available: https : / /
www.microcrystal.com/fileadmin/Media/Products/RTC/Datasheet/RV-
8803-C7.pdf.

[15] A. Osram, CCS811 Datasheet, 2021. [Online]. Available: https : // cdn .
sparkfun.com/assets/learn tutorials/1/4/3/CCS811 Datasheet-DS000459.
pdf.

[16] JLCPCB, JLCPCB.com Pricing, 2021. [Online]. Available: https://jlcpcb.
com/.

13

https://en.wikipedia.org/wiki/Chirp_spread_spectrum
https://www.epfl.ch/labs/tcl/wp-content/uploads/2020/02/Reverse_Eng_Report.pdf
https://www.epfl.ch/labs/tcl/wp-content/uploads/2020/02/Reverse_Eng_Report.pdf
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan
https://www.doxygen.nl/index.html
https://searchapparchitecture.techtarget.com/definition/software-stack
https://searchapparchitecture.techtarget.com/definition/software-stack
https://store-usa.arduino.cc/products/arduino-mkr-wan-1300-lora-connectivity
https://store-usa.arduino.cc/products/arduino-mkr-wan-1300-lora-connectivity
https://en.wikipedia.org/wiki/Boilerplate_code
https://en.wikipedia.org/wiki/Boilerplate_code
https://ceps.unh.edu/
https://www.nsf.gov/
https://docs.rakwireless.com/Product-Categories/WisDuo/RAK4600-Module/Datasheet/
https://docs.rakwireless.com/Product-Categories/WisDuo/RAK4600-Module/Datasheet/
https://cdn-shop.adafruit.com/product-files/746/CD+PA1616S+Datasheet.v03.pdf
https://cdn-shop.adafruit.com/product-files/746/CD+PA1616S+Datasheet.v03.pdf
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/
https://cdn-learn.adafruit.com/assets/assets/000/085/846/original/lis3dh.pdf?1576396666
https://cdn-learn.adafruit.com/assets/assets/000/085/846/original/lis3dh.pdf?1576396666
https://cdn-learn.adafruit.com/assets/assets/000/085/846/original/lis3dh.pdf?1576396666
https://www.microcrystal.com/fileadmin/Media/Products/RTC/Datasheet/RV-8803-C7.pdf
https://www.microcrystal.com/fileadmin/Media/Products/RTC/Datasheet/RV-8803-C7.pdf
https://www.microcrystal.com/fileadmin/Media/Products/RTC/Datasheet/RV-8803-C7.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf
https://jlcpcb.com/
https://jlcpcb.com/

[17] PCBWay, PCBWay.com Pricing, 2021. [Online]. Available: https://www.
pcbway.com/orderonline.aspx.

[18] Voltera, Voltera PCB Printer, 2021. [Online]. Available: https://www.
voltera.io/.

[19] Vultr, Vultr Cloud Compute pricing, 2021. [Online]. Available: https://
www.vultr.com/products/cloud-compute/#pricing.

[20] Linode, Linode Shared CPU pricing, 2021. [Online]. Available: https://
www.linode.com/pricing/#compute-shared.

[21] Amazon,Amazon web services elastic compute cloud pricing, 2021. [Online].
Available: https://aws.amazon.com/ec2/pricing/on-demand/.

[22] Octopart, Octopart Bill Of Material Creator, 2021. [Online]. Available:
https://octopart.com/.

[23] D. L. Mai and M. K. Kim, “Multi-Hop LoRa Network Protocol with
Minimized Latency,” 2020. [Online]. Available: https://mdpi- res.com/
d attachment/energies/energies - 13- 01368/article deploy/energies - 13-
01368.pdf.

[24] G. Boquet, P. Tuset-Peiro, F. Adelantado, T. Watteyne, and X. Vilajosana,
LR-FHSS: Overview and Performance Analysis, 2010. [Online]. Available:
https://arxiv.org/pdf/2010.00491.pdf.

14

https://www.pcbway.com/orderonline.aspx
https://www.pcbway.com/orderonline.aspx
https://www.voltera.io/
https://www.voltera.io/
https://www.vultr.com/products/cloud-compute/#pricing
https://www.vultr.com/products/cloud-compute/#pricing
https://www.linode.com/pricing/#compute-shared
https://www.linode.com/pricing/#compute-shared
https://aws.amazon.com/ec2/pricing/on-demand/
https://octopart.com/
https://mdpi-res.com/d_attachment/energies/energies-13-01368/article_deploy/energies-13-01368.pdf
https://mdpi-res.com/d_attachment/energies/energies-13-01368/article_deploy/energies-13-01368.pdf
https://mdpi-res.com/d_attachment/energies/energies-13-01368/article_deploy/energies-13-01368.pdf
https://arxiv.org/pdf/2010.00491.pdf

Appendices

A LoRa Library GitHub Code Link

This link will direct you to the latest main branch of the library GitHub
repository: https://github.com/arc968/LoRaMeshCapstone

This will additionally give access to the documentation for the library
created through the program Doxygen [4]. Use the README file as a guide
for navigating the GitHub repository and how to access the Doxygen
documentation.

B IBUG Node Overview

The IBUG node is a PCB designed to utilize many data collecting sensors.
These nodes are able to be placed in fields and collect data on any area they
are in. For our team’s project the library17 will be used to create an
application described in the Overview section18 that will be able to run on the
IBUG node. This application will allow the IBUG node to connect to the mesh
network of all the IBUG nodes in an area as well as read its sensor’s data and
transmit it over the network to the central gateway to pass to the user.

The IBUG node also has an optional SD card slot for the users. This SD
card slot will allow the user to have a memory card in the node for a method
to back up any data the node gathers that is gathered and sent over the mesh
network. This back up of the data is used to allow the node to store any data
in the event the node cannot successfully transmit the data over the network
to ensure the user is protected against data loss.

17LoRa Library GitHub Code Link A
18Overview 4

15

https://github.com/arc968/LoRaMeshCapstone

B.1 IBUG Hardware Images

Figure 3: Top Side of IBUG Node Hardware

Figure 4: Bottom Side of IBUG Node Hardware

16

B.2 IBUG Node Hardware

The library application is being written for the IBUG node hardware for
testing purposes. The hardware being used in the IBUG node being used is its
version 1.1, the hardware list is as follows:

• Mesh components:

– RAK4600 [10]: Processor

∗ Datasheet: RAK4600 Datasheet.pdf

– MTK3339 [11]: GPS

∗ Datasheet: MTK3339 Datasheet.pdf

• Sensors:

– BME688 [12]: Gas Sensor

∗ Datasheet: BME688 Datasheet.pdf

– LIS3DH [13]: Accelerometer

∗ Datasheet: LIS3DH Datasheet

– RV-8803-C7 [14]: Real Time Clock (RTC)

∗ Datasheet: RV8803C7 Datasheet.pdf

– CCS811 [15]: Air Quality Sensor

∗ Datasheet: CCS811 Datasheet.pdf

C Project Timeline

C.1 Initial Intended Project Timeline

C.1.1 Initial Gantt Chart

2021

Sep Oct Nov Dec

Project Proposal

Implementation

Testing

Progress Report Draft 1

Progress Report Draft 2

Progress Report

17

https://dl-docs.rakwireless.com/api/render/?emulateScreenMedia=false&pdf.format=legal&url=https%3A%2F%2Fdocs.rakwireless.com%2FProduct-Categories%2FWisDuo%2FRAK4600-Module%2FDatasheet%2F
https://cdn-shop.adafruit.com/product-files/746/CD+PA1616S+Datasheet.v03.pdf
https://www.mouser.com/datasheet/2/783/bst_bme688_fl000-2307034.pdf
https://cdn-learn.adafruit.com/assets/assets/000/085/846/original/lis3dh.pdf?1576396666
https://www.microcrystal.com/fileadmin/Media/Products/RTC/Datasheet/RV-8803-C7.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf

2022

Jan Feb Mar Apr May

Testing

Supporting Tools

Documentation

Polish

Presentation

C.2 Current Project Timeline

C.2.1 Updated Current Gantt Chart

2021

Sep Oct Nov Dec

Project Proposal

Implementation

Documentation

Progress Report Draft 1

Progress Report Draft 2

Progress Report

2022

Jan Feb Mar Apr May

Implementation

Testing

Supporting Tools

Documentation

Polish

Presentation

D Project Budget Data

D.1 Anticipated Initial Budget Breakdown

Our team is comprised of two students for which the school allocates $100 per
team member giving our project $200. Our faculty advisor has also generously
agreed to match our $200 budget to give us a total use-able budget of $400.
The costs associated with our project breaks down into three sections as
follows:

• Node production expenses

18

• Testing setup

• Web services

D.1.1 Node Production Expenses

The cost of producing a node is comprised of two parts. The fist part is the
cost to have a PCB fabricated and assembled with all its components soldered
on fully assembled, on delivery. This cost can vary greatly depending on what
company is producing the PCB. The two companies the team has found that
we believe are the best choices for this are called JLCPCB [16] and PCBWay
[17]. These companies offer the lowest prices for small batches of PCBs along
with the best deals on assembly for the boards. The price breakdown for the
companies are:

• JLCPCB [16]

– PROS:

∗ Offers $2 fabrication for five 2-4 layer PCBs under
100mmx100mm in size using the standard materials or $5
fabrication for five 4-6 layer PCBs of the same requirements.

∗ Fast 1-3 day production.

∗ Offers $7 for PCB assembly base cost plus PCB Bill of
Materials (BOM) and special assembly fees.

– CONS:

∗ Non free shipping plus long shipping times overseas.

∗ Assembly is limited to JLCPCB’s own parts supply.

∗ No part sourcing for assembly.

• PCBWay [17]

– PROS:

∗ Offers $5 fabrication of 10 1-2 layer PCBs under
100mmx100mm in size using the standard materials.

∗ Fast 24 hour production.

∗ Offer $30 assembly for 20 PCBs plus BOM cost and special
assembly fees.

∗ They have part sourcing and allow use of any component.

∗ Allow for fabrication of boards then choosing how many of
them are assembled.

– CONS:

∗ Non free shipping plus long shipping times overseas.

∗ No deals for more than 2 layer PCBs.

19

We estimate the total cost for all the components for a single node to be
around $80.

This shows the total cost for creating a single node using the two
fabrication companies:

• JLCPCB [16]:

– Minimum fabrication amount: 5

– Total fabrication cost: $2
– Minimum assembly amount: 2

– Total assembly cost: $167
– Minimum shipping cost: $2.99 for 12-20 business days

– Maximum shipping cost: $12.98 for 2-4 business days

• PCBWay [17]:

– Minimum fabrication amount: 10

– Total fabrication cost: $5
– Minimum assembly amount: 1

– Total assembly cost: $110
– Minimum shipping cost: $10 for 6-16 business days

– Maximum shipping cost: $20 for 2-4 business days

Total Estimated Cost:

JLCPCB: Minimum: $171.99 Maximum: $181.98
PCBWay: Minimum: $125 Maximum: $135

D.1.2 Testing Setup

For this section of the budget, our team already has been provided hardware
to test with. However, if we find that we require additional hardware, or if
something breaks in testing, it will add to our costs. We need to ensure that
we have enough budget to handle unexpected testing costs that may arise.

This cost could include replacing broken hardware in our testing setup
that may occur. In our setup, we are utilizing MKR WAN 1300 Arduino [6]
and antenna. The cost of the Arduino and included antenna is $40.30 dollars
per unit.
Other unknown costs for testing could include:

• A GPS IC chip

• Node cases

• Wires

• Voltera PCB prototyping [18]

20

D.1.3 Web Services

For our project, our team needs to be able to collect the data from our mesh
network and store it. We need to use a web server that allows us to store,
manipulate and analyze our data. Our team has found three possible options
of Vultr [19], Linode [20] and Amazon Web Services (AWS) [21].

For our project, in the testing stages, our team only needs a bare
minimum server to work with we believe. Looking into all three server options
our team picked out the server type we would have to purchase from each.
Additionally, using our teams initial Gantt chart19 we would need this server
for around seven months or more bringing the costs to:
The server cost break down is as follows:

• Vultr [19]

– $3.50 per month for 10GB Storage, 1 CPU, 512MB Memory, 0.5TB
Bandwidth.

– $24.50 for seven months.

• Linode [20]

– $5 per month for 25GB Storage, 1 CPU, 1GB Memory, 1TB
Bandwidth.

– $35 for seven months.

• Amazon Web Services (AWS) [21]

– t4g.nano for $0.0042 per hour for EBS Storage, 2 CPU, 0.5GB
Memory, 5Gbit Bandwidth.

– About $22 for seven months.

D.1.4 Total Budgeting Breakdown

For our total budget:

• Node production cost can range between $125 to $182

• Server Costs can range between $22 to $35

Our current budget is $400 total. The cost for a server is low however the cost
per prototype node is very high. For our project ultimately our team will need
many nodes produced for full scale testing. This cost of enough nodes to test
with will significantly increase our expenses and leave little to no funds left
should any additional costs arise during testing.

19Initial Gantt Chart C.1.1

21

D.2 Current Budget Status

Currently, our team has not needed to tap into our allotted budget as our
progress has been entirely code based. We have been lucky enough that we
have had no unforeseen testing hardware costs. Additionally due to the
current chip shortage and supply chain issues, our team has not made any
hardware purchases or changes for the IBUG node20. This is because the costs
have been to high and the lead time for fabrication and parts makes hardware
changes at this time not a efficient use of time.

D.3 Future Budget Expectations and Plan

For the future of our teams budget, we do still expect the costs of purchasing a
server for testing. This cost will be directly associated to our teams new
testing timeline21. We will be purchasing the use of a Vultur basic server
[19]22. This server cost will begin when the team has finished the library code
and is ready for field testing of the intended application running on the IBUG
node. This is the only foreseeable expected cost our team anticipates at this
time and will not make a significant impact into our $400 budget.

20IBUG Node Overview B
21Updated Current Gantt Chart C.2.1
22Web Services D.1.3

22

Acronyms
A | B | G | H | I | O | P | R | S | W

A

AWS Amazon Web Services. 21, 23

B

BOM Bill of Materials. 19, 23

G

GPS Global Positioning System. 5, 10, 17, 20, 23

H

HAL Hardware Abstraction Layer. 4, 7, 8, 9, 23

HTML Hyper Text Markup Language. 10, 23

I

IC Integrated Circuit. 20, 23

IDE Integrated Development Environment. 4, 8, 23

ISM Industrial Scientific Medical. 3, 23

O

OSI Open Systems Interconnection. 3, 23

P

PCB Printed Circuit Board. 11, 19, 20, 23

PHY LoRa Physical Layer. 3, 23

R

RTC Real Time Clock. 17, 23

S

23

SD Secure Digital. 10, 15, 23

W

WAN Wide Area Network. 3, 23

24

	Introduction
	Background
	LoRa PHY
	LoRaWAN

	Objectives
	Overview
	Library Code Overview
	Mesh Protocol Overview

	Current Status
	Initially Proposed Plan
	Deviations from Original Plan
	Library Plan Changes
	Timeline Changes

	Tasks Breakdown

	Future Work
	Core Mesh Implementation
	Driver Implementations
	Documentation
	Doxygen

	Testing
	Application

	Discussion & Conclusion
	Acknowledgment
	References
	Appendices
	LoRa Library GitHub Code Link
	IBUG Node Overview
	IBUG Hardware Images
	IBUG Node Hardware

	Project Timeline
	Initial Intended Project Timeline
	Initial Gantt Chart

	Current Project Timeline
	Updated Current Gantt Chart

	Project Budget Data
	Anticipated Initial Budget Breakdown
	Node Production Expenses
	Testing Setup
	Web Services
	Total Budgeting Breakdown

	Current Budget Status
	Future Budget Expectations and Plan

	Acronyms

